Search results for "Sex Determination Processes"
showing 10 items of 13 documents
Sex-allocation conflict and sexual selection throughout the lifespan of eusocial colonies.
2018
AbstractModels of sex allocation conflict are central to evolutionary biology but have mostly assumed static decisions, where resource allocation strategies are constant over colony lifespan. Here, we develop a model to study how the evolution of dynamic resource allocation strategies is affected by the queen-worker conflict in annual eusocial insects. We demonstrate that the time of dispersal of sexuals affects the sex allocation ratio through sexual selection on males. Furthermore, our model provides three predictions that depart from established results of classic static allocation models. First, we find that the queen wins the sex allocation conflict, while the workers determine the max…
Genomic characterization of the Atlantic cod sex-locus
2016
AbstractA variety of sex determination mechanisms can be observed in evolutionary divergent teleosts. Sex determination is genetic in Atlantic cod (Gadus morhua), however the genomic location or size of its sex-locus is unknown. Here, we characterize the sex-locus of Atlantic cod using whole genome sequence (WGS) data of 227 wild-caught specimens. Analyzing more than 55 million polymorphic loci, we identify 166 loci that are associated with sex. These loci are located in six distinct regions on five different linkage groups (LG) in the genome. The largest of these regions, an approximately 55 Kb region on LG11, contains the majority of genotypes that segregate closely according to a XX-XY s…
Molecular markers for germ cell differentiation in the demosponge Suberites domuncula
2004
Sponges (phylum Porifera) are simple metazoans for which no molecular information on gametogenesis and larval development is available. To support the current study, it was confirmed by histology that oocytes and larvae were produced by the demosponge Suberites domuncula. Three genes/expressed products from S. domuncula whose expression correlated with sexual reproduction were identified and characterized (they are used here as marker genes): i) a receptor tyrosine kinase (RTK) with sequence similarity in the tyrosine kinase domain to fibroblast growth factor receptors; ii) the sex-determining protein FEM1 and iii) the sperm associated antigen (SAA) of triploblasts. Antibodies against the e…
Distribution of heterochromatin on the mitotic chromosomes of Musca domestica L. in relation to the activity of male-determining factors
1998
In the housefly, male sex is determined by a dominant factor, M, located either on the Y, on the X, or on any of the five autosomes. M factors on autosome I and on fragments of the Y chromosome show incomplete expressivity, whereas M factors on the other autosomes are fully expressive. To test whether these differences might be caused by heterochromatin-dependent position effects, we studied the distribution of heterochromatin on the mitotic chromosomes by C-banding and by fluorescence in situ hybridization of DNA fragments amplified from microdissected mitotic chromosomes. Our results show a correlation between the chromosomal position of M and the strength of its male-determining activity…
Quantitative parameters and ecological implications of a specialized tritrophic interaction involving a seed-feeding tortricid, Pseudargyrotoza conwa…
2014
Producción Científica
Y chromosomes: born to be destroyed
2005
Suppression of recombination is the prerequisite for stable genetically determined sex systems. A consequence of suppression of recombination is the strong bias in the distribution of transposable elements (TEs), mostly retrotransposons. Our results and those from others indicate that the major force driving the degeneration of Y chromosomes are retrotransposons in remodelling former euchromatic chromosome structures into heterochromatic ones. We put forward the following hypotheses. (1) A massive accumulation of retrotransposons occurs early in non-recombining regions. (2) Heterochromatic nucleation centres are formed as a genomic defence mechanism against invasive parasitic elements. The …
Sex change in plants and animals: a unified perspective
2014
The capacity of organisms to change their sex has evolved independently in several plant and animal lineages. Sex change has been widely studied, but research approaches have differed for plants and animals, and conclusions have often been taxon-specific. Although sex allocation theory provides a unifying framework for the study of sex change, this unity has not always been appreciated, especially in the botanical literature. Here, we review sex change with regard to its representation in relation to taxonomy and other sexual systems, with regard to its suggested adaptive benefits, and to the role of taxon-specific body architecture, such as modularity and gonadal structure. We highlight di…
A cost of Wolbachia-induced sex reversal and female-biased sex ratios: decrease in female fertility after sperm depletion in a terrestrial isopod.
2004
A number of parasites are vertically transmitted to new host generations via female eggs. In such cases, host reproduction is an intimate component of parasite fitness and no cost of the infection on host reproduction is expected to evolve. A number of these parasites distort host sex ratios towards females, thereby increasing either parasite fitness or the proportion of the host that transmit the parasite. In terrestrial isopods (woodlice), Wolbachia bacteria are responsible for sex reversion and female-biased sex ratios, changing genetic males into functional neo-females. Although sex ratio distortion is a powerful means for parasites to increase in frequency in host populations, it also …
A mathematical model for the phase of sexual reproduction in monogonont rotifers
2000
Recently, the optimal sex allocation in monogonont rotifers is studied in [1], and, as a closely related question, the relative frequencies of the relevant types of mictic females. The authors focus on the evolution of the age at which young mictic females lose their fertilization susceptibility and they address the threshold age of fertilization that maximizes resting egg production. Assuming that a stationary population is achieved, with stable age distribution, they obtain their results, without knowing the stationary population. Our aim is to study this problem in the framework of the theory of nonlinear age-dependent population dynamics developed by G. F. Webb in [13], which is more ap…
DXYS156: a multi-purpose short tandem repeat locus for determination of sex, paternal and maternal geographic origins and DNA fingerprinting
2002
In forensic science and in legal medicine Y chromosomal typing is indispensable for sex determination, for paternity testing in the absence of the father and for distinguishing males in multiple rape cases. Another potential application is the estimation of paternal geographic origin or family name from a crime stain to narrow down the range of suspects and thus reduce costs of mass screenings. However, Y typing alone cannot provide a sufficiently resolved DNA fingerprint as required for court convictions. Thus, there is a dilemma whether or not to sacrifice valuable material for the sake of extensive Y chromosomal investigations when stain DNA is limited (typically allowing only few PCR am…